
01PRD – Ambient Intelligence

Lab 2 – Python Software

Dario Bonino, Luigi De Russis

LAB 2 – PYTHON SOFTWARE

EXERCISE – SIMPLE MP3 LIST

Write a program that, given an initial “root folder”, scans the file system (including sub-folders and links) and

indexes music files (consider .flac and .mp3 files, only) extracting the associated metadata (e.g., ID3 tags).

Given the resulting “list” of music tracks, the program should provide simple search based on tags’ content.

All functions shall be accessible through a command line interface supporting the following commands,

commands marked as “optional” may be skipped:

Command Description

index <folder_name> Indexes the given folder; may be called more than on time for
different directories

search <tag_name>

<text>
Search for tracks having the given <text> in the given <tag> (optional)

list Displays the list of tracks currently indexed (titles only) and the
corresponding id. Provides a final summary reporting the
number of tracks and the number of .mp3 and .flac files.

show <track_id> Show the details (i.e., the indexed information) about the music
file having the given <track_id>

exit Quit the program

Suggestions:

 Exploit the mutagen python module to extract track tags

 Only consider title, album, genre, artist tags (might also be empty for some files)

 Use a scalable approach defining re-usable objects, e.g., a Track class for modeling track information,

Tracks class for handling track collections, etc.

EXERCISE – SIMPLE MP3 PLAYER

Extend the program developed in the first exercise to allow playing selected tracks. For the sake of simplicity,

assume that tracks are uniquely identified by a numeric id, which is part of the search result. Assume simple

command-line interface, allowed commands include:

Command Description

play <track_id> Plays the file corresponding to the given track index

01PRD – Ambient Intelligence

Lab 2 – Python Software

Dario Bonino, Luigi De Russis

Stop Stops the player

Suggestions:

 Exploit the MPlayer process to actually play files, look at MPlayer man pages for command-line

options

 The output and input streams of an external process may be captured using the following line of

python code:
o player = Popen("mplayer -slave -quiet -nolirc -msglevel all=-1 -idle",

stdin=PIPE, stdout=PIPE, shell=True), then the input stream will be available as the

stdin file and the output stream as the stdout file.ù

EXERCISE - TWEET A PYTHON

Write a simple Twitter monitor that, given a Twitter user(name), provides a vocal summary of the latest two

tweets for each user’s followers.

Optionally, if you have your own Twitter account, write a function for getting a vocal alert every time that the

Twitter status of your friends changes.

If you don’t have a Twitter account, you can exploit the AmI course account (@AmICourse2015) with the

following authentication parameters:

 consumer key: wIDHvofdfV2QO94s1bjebQ

 consumer secret: nO0q0Ko8EBQ6Lb8FNLwEsT3r2QLkjWsO02dr9uegU

 access token: 2408639030-691GXH8B4aQt2JgXN05uSkWAJyywmds6OeLCaI4

 access token secret: I7lxOY8wSBf0bKlWKJ5UlI3tVRoSaYUeiUseRLo9VBoky

To create your own credentials, log in at http://dev.twitter.com and create a new application. Then, generate

the access token.

You can exploit the python-twitter library at http://github.com/bear/python-twitter, the available tutorials,

the infos reported in the repository (README.md), and any portion of code published in this course.

python-twitter can be installed using easy_install or pip.

Suggestion: to get the tweets of a selected user, you can call the following method:

api.getUserTimeline(screen_name=’@username’), where username is the Twitter screen name.

http://dev.twitter.com/
http://github.com/bear/python-twitter

